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Abstract

Cyclotron maser and plasma wave growth which results from electrons accelerated

in magnetic loops are studied. The evolution of the accelerated electron distribution is

determined by solving the kinetic equation including Coulomb collisions and magnetic

convergence. We find that for modest values of the column depth of the loop the growth

rates of instabilities are significantly reduced and that the reduction is much larger for

the cyclotron modes than for the plasma wave modes. The large decrease in the growth

rate with column depth suggests that solar coronal densities must be much lower than

commonly accepted in order for the cyclotron maser to operate. The density depletion

has to be similar to that which occurs during auroral kilometric radiation events in the

magnetosphere.

The resulting distributions are much more complicated than the idealized distribu-

tions used in many theoretical studies, but the fastest growing mode can still simply be

determined by the ratio of electron plasma to gyrofrequency, U "- wp/f4. However, the

dominant modes are different than for the idealized situations with growth of the z-mode

largest for U <0.5, and second harmonic x-mode (s=2) or fundamental o-mode (s=l) the

dominant modes for 0.5<U < 1. The electron distributions typically contain more than

one inverted feature which could give rise to wave growth. We show that this can result in

simultaneous amplification of more than one mode with each mode driven by a different

feature and can be observed, for example, by differences in the rise times of the right and

left circularly polarized components of the associated spike bursts.

Sub iect headinn: earth: aurorae - hydromagnetics - particle acceleration - radiation mech-

anisms - Sun: corona - Sun: radio radiation - wave motions



I. Introduction

Rapidly fluctuating, short duration (1-100 ms) spike bursts with very high brightness

temperatures (_>1012K), high degrees of circular polarization (often up to 100%), and

narrow bandwidth (Aw/w_<0.01-0.1) have been observed at microwave frequencies from

the solar corona (DrSge 1977, Slottje 1978, Zhao and Jin 1982, St_ihli and Magun 1986) and

from the dwarf M star AD Leonis (Lang and Wilson 1986). Similar emissions, but of longer

duration have been observed from the stellar system Algol (Lestrade et a/.1988) and other

red dwarf (dMe) flare stars (Bastian and Bookbinder 1987, Kundu and Shevgaonkar 1988).

The auroral kilometric radiation (AKR) in the Earth's magnetosphere (e.g. Gurnett 1974,

or more recently Calvert 1981), Jovian decameter radiation (DAM), and Saturnian (Carr,

T.D., Desch, M.D., and Alexander, J.K. 1983) and Uranian (Gurnett et al.1986) kilometer

radiation also have similar characteristics. A common feature of all these objects is that

they contain energetic electrons in magnetic loop structures and the frequencies of the

bursts are on the order of the electron gyrofrequency for the magnetic field strengths and

electron energies expected in their magnetospheres.

The properties of the emission indicate that the radiation mechanism is not sponta-

neous, but is coherent emission from electrons within the magnetic structure. Wu and Lee

(1979) were first to recognize that the cyclotron resonance is important for nonrelativistic

or midly relativistic electrons and that the dynamics of electrons of these energies in the

Earth's auroral zone can lead to an inverted momentum distribution which gives rise to

amplified cyclotron emission (also known as cyclotron maser emission). This has become

the accepted mechanism of AKR and has been suggested to explain solar and stellar spike

bursts (Holman, Eichler, and Kundu 1980, Melrose and Dulk 1982a). Since then much

theoretical work has been done to advance our basic understanding of cyclotron maser

emission (Lee and Wu 1980, Hewitt, Melrose, and RSnnmark 1982, Sharma, Vlahos, and

Papadopoulos 1982, Wu et a/.1982, Freund et ai.1983, Melrose, Hewitt, and Dulk 1984,

Wu 1985). These works have established the relationship between the amplified cyclotron
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emission and idealized inverted electron distributions (e.g. so called sin-N loss cone, hol-

low beam, and DGH distributions) which are used to make the calculations tractable. It

has been shown through these studies that, in all cases, the ratio of the electron plasma

frequency to gyrofrequency, U = wp/f_,, determines the fastest growing mode. The basic

results are that for small U < U0 < 1 the fundamental (s=l) x-mode is the fastest growing

mode, for slightly larger U < 1, the emission is fundamental z-mode or o-mode, and as U

is increased further the dominant mode changes from z-mode to second harmonic (s=2)

x-mode to second harmonic o-mode. For example, for the sin-N loss cone distribution

U0 = 0.3 (see e.g. Melrose, Hewitt, and Dulk 1984, Fig. 1). We parenthetically add that

the cyclotron maser mechanism has also been suggested to be the underlying physical

process responsible for metric and decimetric continuum bursts from the sun (Winglee

and Dulk 1986), localized heating of the corona (Melrose and Dulk 1982b), and particle

acceleration (Sprangle and Vlahos 1983).

In general, one requires a knowledge of the momentum distribution of electrons for

determination of the characteristics of the instabilities and of the associated emission prop-

erties. However, with the exception of the description of the electrons in the auroral zone by

Wu et a/.(1982) or in coronal loops by White, Melrose, and Dulk (1986, hereafter WMD86),

all of the theoretical discussions have assumed some idealized electron distribution with

little attention to the details of how such inverted distributions are actually realized. The

standard para.digra is that electrons are accelerated (or heated) in a magnetic loop with

converging field structure. Then, after reflection their distribution is inverted due to an

excess of perpendicular momentum (Of/Op..t. > 0) with the form of the inverted distribu-

tion given by an idealized analytic form. The inversion gives rise to coherent emission, in

either the x-mode, o-mode, z-mode, or some combination of these depending on the value

of U in the source. These investigations have merely shown that this simple model can

account for the general aspects of the observed spike bursts.

There are, however, a few shortcomings of the theory in its simplest form. For example:
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i) Typically, very high degrees (nearly 100%) of circularly polarized radiation are

expected in the sense of the fastest growing mode with right (left) circularly polarized

emission corresponding to the x-mode (o-mode), but for the majority of solar millisecond

spike bursts the observed circular polarization is between 25 and 30% (Benz 1986).

ii) The spike bursts generally occur during the rise and maximum phase of the impul-

sive microwave emission (Slottje 1978, Zhao and Jin 1982, Zhao 1983) while formation of a

loss cone distribution occurs after trapping and many bounce periods (see e.g. Aschwanden

and Benz 1988).

iii) The growth rates (amplification factors) computed using the distribution measured

in situ by the $3-3 satellite in the Earth's auroral zone (which shows both loss cone and

hole structures) are much lower than those found from the idealized distributions and are

not large enough to account for the observed levels of AKR (Omidi and Gurnett 1984).

However, as pointed out by the authors in their article, the lower growth rates may be

attributable to relaxation of the distribution before measurements were made or to the

difficulty of measuring sharp discontinuities.

All of these indicate that the actual distributions of electrons present in physical mag-

netic loops axe probably much more complicated than the idealized distributions assumed

in the above studies. In order to evaluate the importance of departures from the idealized

situations it is necessary to consider the dynamics of accelerated electrons in magnetic

loops. WMD86 examined electron propagation effects in a model where electrons are

impulsively heated at the apex of a converging magnetic loop, but did not include any

stochastic scattering or energy loss processes e.g. Coulomb collisions. Furthermore, they

compute the growth rates at times when the electrons are moving predominantly down-

ward, while growth rates obtained after reflection are of primary interest because this is

when the loss cone feature and maser action are expected to appear.

The purpose of this paper is to remove these limitations of the model by considering

the transport and evolution of the electron distribution in detail. In addition to mag-
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netic mirroring, other physical interactions can be important. The relevant processesto

considerare determined by the energyof the electronsand the properties of the ambient

plasma. For example, energy lossand pitch anglescattering due to Coulomb interactions

are the dominant processesfor electrons of energy 10 to 103keV in flaring solar coronal

loops (densities 109to 1011cm-3 and magnetic field strengths _ 102to 103G). Theseand

other interactions with the ambient plasmatend to smoothout the inverted features in the

electron distribution and therefore reducethe growth rates and alter emissionproperties

of the cyclotron maser. In this article, we determine the evolution of the energeticelectron

distribution including Coulomb interactions aswell as magneticmirroring and then exam-

ine the subsequenteffectson the growth rates of the cyclotron maser and plasma waves

for different valuesof the field convergenceand plasma density. We do not calculate the

evolution of the wavespectrum and thereforedo not include any nonlinear (or quasi-linear)

effectson the electron distribution.

In §II, we review the wave modes of interest and the relation between thesemodes

and the momentum distribution of electronsand alsodiscussthe method usedto compute

the growth rates. In §III, we give the kinetic equation which determines the evolution of

electrons in magnetic loops and describeits solution. Then, in §IV, weuse this solution to

compute the growth rates for cyclotron maserand plasmawaveemissionfor a wide range

of physical conditions. We discussour results in §V.

II. Wave Properties and Growth Rate Formulae

a) Electron Cyclotron Ma$er

The electron cyclotron maser is associated with induced emission of the magnetoionic

modes of plasma theory. The modes are the solutions to the dispersion equation for a cold

plasma (collision frequency << wv, f_,) in a uniform magnetic field at frequencies where the

motion of the ions can be neglected (see e.g. Stix 1962, p.38). The wave properties are

completely determined by the two ratios X = w_/w 2 and Y = fte/w, where w is the wave



frequency, and the angle 8 between the wave vector k and the direction of the magnetic

field. There are two solutions to the dispersion equation at each frequency and we adopt

the conventions of Melrose (1980b, p. 258) to describe these modes and their growth rates.

The wave properties, namely the index of refraction no, = k_,c/w, the longitudinal part of

the polarization K_,, and the axial ratio of the polarization ellipse T_,, of mode a (-1 for

x-mode, +1 for o-mode) are

2 1- (1)
n_, = T_, - Y cos O '

XY sin 0 T_,

1-X T -Ycos0' (2)

T_, = -a(z 2 + I) I/2 - Z, (3)

Y sin 2 0

x = 2(1 - X) cose ' (4)

The resonant (n_ = oo) and cut-off (n_ = 0) frequencies determine the frequency range

where these modes propagate. The waves propagate above their cut-off frequency which

is equal to the plasma frequency, wp, for the o-mode, and a frequency

w, = -_[1 + (1 + 4tr2) '/2] , (5)

for the x-mode. For frequencies below the cut-off, but larger than the resonant frequency

the waves decay. The resonant frequencies are

W_(O)--_'_2 ( U 2 U2) 2 011/2)-_- 1 + 4-[(1+ -4U2cos 2 , (6)

where + is for the x-mode and - for the o-mode. Note that the usual sign convention,

which we use here, is opposite to the usual sign convention used for o" above. Below the

resonant frequencies the modes change character. The x-mode becomes the z-mode which

propagates in the frequency range wz - _2e < w < w+. The z-mode can not escape a

physical plasma because it will eventually be absorbed in a lower density region where its

frequency equals the resonant frequency w+. Below w_, the o-mode becomes the whistler

which will not be of interest here.
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The electron cyclotron maseraction is possiblewhenthe electron momentum distribu-

tion is suchthat amplification (negativedamping) of thesemodesoccurs. Near resonances

one must include the effectsof finite temperature of the plasma. This changesthe disper-

sion relation and waveproperties given here for the cold plasmamodes. Below, wediscuss

wavesnear the resonancesfurther and their relevanceto the maserproblem.

i) General Growth Rate Equations

The growth rate Fa(k) of a particular wave (specified by mode, frequency, and angle)

is given by (see e.g. Melrose 1980b, p. 275)

OO

F_'(k) Z / A_(k, p)6(w - s_,/7 - kll/_l[c)

(7)
,J

+ kll_pll f(PlI,P-J-)27rp-l-dp-l-dPlI,

where the transition rate A, _ is

(2reck±)2 K_'sinO+(c°s-n'_ll)T" J,(z) + JI(z) (8)
A*a(k' P) = wn_,_(1 + T2¢) n_,Z± sin0

J, is the bessel function of order s, its argument z = 7n¢_11 sin O/Y, and

c3(wn_,) XYT_,cosO ( (I + X)(1- T21)na Ow -l+2(Tt,_Ycos0) 2 1+(1_X)(i+_ (9)

Including only the s = n term in equation (7) gives the growth rate of the n th harmonic of a

particular mode a (e.g. a = -1, s = 1, yields the growth rate of the fundamental x-mode).

The resonance.condition given by the 6 function in equation (7) reduces the integral to a

one-dimensional integral along an ellipse in velocity space (hyperbola in momentum space)

which is called the resonance ellipse. This condition severely limits the electron energies

which contribute to the growth of a particular wave. Furthermore, the cyclotron maser is

driven by non.relativistic electrons therefore the argument of the bessel function is small

z << 1 and Js(z) ",, z s so that the growth rates are largest for the first few harmonics.

Therefore, the growth rate of a wave is dominated by a particular term (harmonic) in the

sum so that it is useful to discuss the growth at different harmonics separately.
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ii) Equation_ for Nonthermal Electron Di_tribution_

Given the electron distribution f, calculation of the growth rates for the various modes

is straightforward. As described in the next section, we will use the kinetic equation to

obtain a solution for the electron distribution f as function of E and #. The transformation

of variables necessary to apply the growth rate formula of equation (7) is obtained from

f( S, _) = "7213rn3 ca f(p11, pj_), which gives

F_(k) = dE -_ic-_sO_ "y -_ + -_(n_,3cosO- #)_--fi# _, _-_ _,=,a ' (10)

where #a = (1 - sY/7)/3na cos 0. In general, f is the sum of the distribution of thermal

background plasma and the nonthermal electrons whose distribution is obtained from

equation (20) below. The background thermal plasma (with total density no) gives a

negative contribution to the growth rate which we will consider separately, so that, unless

otherwise specified, in what follows f stands for the normalized (f fdEd#-l) nonthermal

component of the distribution with total density na. After further simplification, we find

that the ratio of the growth rate to the gyrofrequency is

n_ -noB_,(k) dE[K_,sinO+(cosO-n_,_a)T_,]J,(z)+_±n_,sinOJ'(z) (11)

[72 O 7 0 .:.R+ cos -

( XYT_cosO(1-XT_))B_,(k)=n_sin20[cosOI (1 + T_)+ (--_¢ - V_o_)2-_-l-- _- ) (12)

The calculation of the growth rate for any wave is straightforward using these equations

if the distribution f is known. However, given f the determination the wave having

the largest growth rate is not. In §IV below, we discuss an efficient method for this

determination.

We have tested this method of growth rate calculation and our expression for the

growth rate given in equations (11) and (12) by computing the maximum growth rates for

the sin-N loss cone distribution

](_3, a)- (2r)-a/2Z_, exp(-/32/2Z_") { sinN(_ra/2aC)'l, aa <->acaC (13)
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where f(E, _) = _fa/3](/_, (_), N = 6, (_c = 30 °, and f_T = _/kT/mc 2 (with T = 10SK), and

comparing our results to those of Melrose, Hewitt, and Dulk (1984, Fig. 1) and Aschwanden

and Benz (1988, Fig. 5). We confirm these calculations. However, we note that our

convention (see also Sharma, Vlahos, and Papadopoulos 1982) is to combine the factor of

the ratio of the densities with the growth rate, while these previous works fix the density

ratio (10 -2) for a particular value of U (0.1). There is then a difference of a density factor

in the expressions for the growth rates, but the relative growth rates of the given modes

are identical for any value of U.

b) Plasma Waves

In addition to maser emission, the distribution of accelerated electrons is expected

to generate longitudinal waves (or plasma waves), especially when the electrons are pre-

dominantly down going and therefore beam-like (see e.g. Hamilton and Petrosian 1987).

In a magnetized plasma, these waves occur near a resonance of the magnetoionic modes

with the value of U determining the resonance w+(0) or w_(0). Near these frequencies,

the wavelength becomes smaller than the Debye length and thermal corrections to the

wave properties are then necessary (Melrose 1980, p. 265). For U < 1, the resonance

at w = w_(0) yields a longitudinal mode which is usually called the slow plasma wave.

For U > 1, the longitudinal mode occurs at the resonance w = w+(0) and is called the

generalized Langznuir wave.

The growth rate of generalized Langrnuir waves (U > 1) was examined by McClements

(1987) to determine the stability of the steady state solutions of Leach and Petrosian (1981)

and in WMD86 the growth rate of the slow plasma wave (U < 1) is evaluated for down

going electrons. One finds in both of these papers that the maximum growth rate occurs

at 0 -- 0. Therefore, we evaluate the growth rate of plasma waves when the wave vector

is along the magnetic field (6 = 0). This simplifies the analysis because, regardless of the
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value of U, the frequency of these waves is given by

2 + 3k2v 2 ,_d_ = COp (14)

where v 2 = kTe/me is the thermal velocity of electrons in the ambient plasma of temper-

ature Te. For this angle of propagation only the s = 0 term in the sum of equation (7) is

nonzero and the growth rate can be written

_;v no n_COt dE V2 7 ___ (15)-- = _ + f12 I_ . _=al.,a

Thermal damping must also be considered for the plasma modes. This provides a negative

contribution of

rr= 1 exp(-l/2,qfl .) (16)
ni fiTCOy V 2 wl _ a

so that the total growth rate is given by the sum of equations (15) and (16).

III. Electron Dynamics and Distribution

As discussed above, in most models of maser emission it is argued that the electron

distribution is given by an idealized functional form such as the sin-N loss cone (see eq.

[13]) and the emission properties are studied using growth rates computed using this ide-

alized distribution. In this section, we present a more realistic model in which a specified

electron distribution is injected in a magnetic loop. The electron distribution resulting

from subsequent evolution and transport of the electrons in the magnetic loop which de-

termines the growth rate of the modes is found by solving the electron kinetic equation

using the Fokker-Planck formalism. This allows us to determine how the strength and

degree of convergence of the magnetic field and the plasma density effect the maser action.

a) Kinetic Equation

The propagation and evolution of accelerated electrons in magnetic loops is deter-

mined by the kinetic equation. For electrons of energy 10 keV to 1 MeV in an ambient

plasma with density 10 9 to 10X4cm -3 and magnetic field strength 10 z to 10 3 G (conditions



12

believed to occur in the coronae of the sun and flare stars with Re "_ 0.3 to 3 GHz) the

dominant processes are magnetic mirroring, Coulomb collisions, and wave-particle inter-

actions. Observations allow us to estimate with some degree of confidence the expected

effects of the first two processes, but we lack direct knowledge of the amount of plasma

waves that are present in the flare plasma. The minimal level of plasma waves is that

produced by the instabilities which we are about to evaluate. As mentioned above, in-

clusion of the back reaction of the waves generated by electrons on their propagation is a

nonlinear problem which increases the complexity of the situation beyond the scope of this

paper. The steady state problem for U >> 1 (only Langmuir waves) including the effects

of collisions and the nonlinear effects of waves was treated in our earlier paper (Hamilton

and Petrosian 1987). In this paper, we ignore the uncertain effects of the plasma waves

so that the evolution of the electron distribution in a cold plasma (kT << typical electron

energy) is determined by (see e.g. Hamilton, Lu, and Petrosian 1990)

--= __ +_cdlnB O ( (1 /_2) f)+----(f]-I--- [(1Of -/_c_._ - c O c 0 2 Of]ot OE  0#3, O. -" +s ,
(17)

where A0 = (102%m)/no(s)In A, no(s) is the background plasma density, In A(_ 20) is the

Coulomb logarithm, and S(E, #, s, t) is the source. Here we have assumed that the electron

gyroradius is much smaller than other relevant length scales (i.e. A0 or (dlnno/ds) -_) so

that the electron distribution function f(E, _, s, t) can be described by four variables, the

particle kinetic"energy E (in units of mc 2), pitch angle cosine/_, position along the magnetic

field s, and the time t.

b) The Source Tern

The existence of nonthermal electrons with energies of 10 to 100 keV in solar coro-

nal loops is well established from studies of impulsive hard X-ray bursts (see e.g. Kane

et a/.1980). The electrons are characterized by a power-law energy spectrum f(E) o¢ E -6

with 2.5<5< 7.5, but the angular distribution is not very well known (see e.g. McTiernan



13

and Petrosian 1990). Electrons of these energies (10 to 100 keV) accelerated on open field

lines (or on closed field lines of very large radii) are also believed to be the source of type III

radio bursts (Goldman and Smith 1986). It is therefore natural to assume that under cer-

tain circumstances such accelerated electrons when reflected before reaching the transition

region can be a source of free energy to drive the cyclotron maser. This assumption is

supported by the association of the impulsive hard X-ray and spike emissions (see Benz

and Kane 1986). Similar energetic particle spectra are expected to be present in other

flare stars.

Hence, we will assume a source function

r_ a

S(E,l_,s,t)- 2(6- 1)Eo (E°/E)6 exp(-s2/L2a)6(t) (18)

This corresponds to the impulsive acceleration of electrons with an isotropic pitch angle

distribution and power-law index 6 within an acceleration region of characteristic size L,.

The distribution is normalized such that the density of nonthermal electrons of energy

greater than E0 at s = 0 is n_.

c) The Ambien_ Plasma

We assume, as is generally done, that the above distributions of electrons are injected

into a symmetric coronal loop of half length L¢ with apex at s = 0. As is evident from

equation (17), in addition to the source term S, we also need to specify the plasma pa-

rameters A0 and d In B/ds and their variation along the loop which are obtained from the

variations of plasma density no(s) and field strength B(s), respectively. For the purpose

of solving equation (17) we only need the ratio B(s)/Bo where B0 is the field strength at

s = 0 and not the absolute magnitude of the magnetic field. Following WMD86, we adopt

the simple model

B(s)/Bo = 1+ s2/L (lo)

which corresponds to the variation of magnetic field strength in the far field of a dipole.

We further assume that the density in the corona is constant and increases rapidly below
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the transition region with a scale height much shorter than LB or Lc so that particles

which reach there are quickly thermahzed and do not contribute to the maser emission.

The extent of the loss cone distribution is determined by the ratio LB/Lc or by what

2 2
we call the mirror ratio r,_ = 1 + Lc/L B which is defined such that, in the absence of

collisions, electrons injected (at s = 0) with pitch angles greater than a¢ = arcsin(1/rv/7-_ )

are reflected above the transition region. On the other hand, the degree to which the

collisions smooth out loss cones is determined by the column depth to the transition region

Nt,. = noLo.

d) Solution of the Kinetic Equation

We have solved the kinetic equation (17) using the numerical code described in

Hamilton, Lu, and Petrosian (1990) for the impulsive source given by equation (18) with

La = 0.1Lc and 6 = 5. For the ambient plasma, we use r,_ = 1, 2, 5, and 10 and column

depths to the transition region Nt,. = 0, 1.91 × 101T, 4.74 × 10 aS, 1.88 x 1019, 7.37 x 1019,

and 4.36 x 102°era -2. Since the column depth an electron of energy E traverses before

stopping is

N(E) = no$oE2/(E + 1) . (20)

the above column depths (Ntr) correspond to the stopping depths for electrons of initial

energies E = 0, 1, 5, 10, 20, and 50 keV, respectively. Strictly speaking, no plasma modes

can be expected for Ntr = 0 or for zero density plasma. This case represents the idealized

situation for which collisions can be neglected and provides a useful comparison for the

finite density situations where collisions with the ambient plasma become increasingly

important (cf. White, Melrose, and Dulk 1983). This case will also be useful for comparison

with the results of WMD86 who ignored collisions.

It should be noted that the results presented below are more general because of the

simple scaling properties of the kinetic equation (17). The dynamics are completely deter-

mined by the column depth Nt,. = nolo and the mirror ratio r,,,. Rescaling the variables
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in the kinetic equation according to the transformations L' = rlL for all the lengths in

the problem, n' = n/r? for the densities, and t' = rlt for the time, leaves the equation un-

changed. Therefore, if the kinetic equation is solved for a given half loop length Lc, density

no, and mirror ratio rrn, the solution for this mirror ratio and column depth Nt, = noLc

is obtained for any half loop length L_c =rlLc and density n_o = no/rl by transforming the

time t _ = tit, position s I = rls, and L', = rlL_.

Some of the results from these calculations are shown in Figures 1 and 2 where we

present contour plots in velocity space (/311, _±) of the distribution function at four times

(described below) and at two locations s = 0 and s = Lc/2, respectively. The mirror ratio

rm = 5 corresponds to Lc/LB = 2 or critical pitch angle ac = 26 ° (/_ = 0.8). On each

figure, the left, middle, and right panels are for column depths corresponding to stopping

depths for electron energies E = 0, 10, and 20 keV, respectively. In the absence of collisions,

electrons of initial energy Ei (or velocity 13i) and pitch angle cosine #i will be reflected

after a time TB = zrLs/2/3ic_. Since we consider electrons of energy E > E0 (see

eq. [18]) and because only electrons with #i < We (or as > ac) are reflected, the maximum

value of interest for TB is T_ az = ¢rLBv/'f'_m/2/3oC. We use a minimum electron energy

E0 = 10 keV, and display from top to bottom on each figure the distribution at times

1 ,"f_maz 1 ,'rmax = T_aX, 3,_maz respectively.tl "- _.L s , t2 -- _.L B , t3 and t4 = _'B ,

Vertical and horizontal cuts on this figure show where Of/Oil3111 > 0 and Of/O�3± > 0

which are the features of the electron distribution that give rise to amplified emission. For

example, in Figure 1 for the model E = 0 along the line/311 = 0.3 at time t2 there is one

region and at t3 there are three regions where Of/OI3_L > 0. Regions of Of/O_± > 0 are

also seen in Figure 2 at these times. Positive gradients in parallel velocity (Of/OI/311J > O)

are most clearly seen in Figure 2 at tl, for all values of the column depth.

We have shown contour plots in velocity space even though we calculate the distribu-

tion f(E, _) in energy and pitch angle cosine space and the growth rate formulae are given

in terms of momentum space variables (see eq. [7]). We do this because the phase space
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defined by (/_11,/_±), unlike the other variable choices, is finite and because it is common

practice to display these contours in velocity space. Notice that for the energies involved

there will be very little difference between the shapes of these contours and those made in

momentum space so that features found in the velocity distribution here are also present

in the momentum distribution. No contours are shown for _3 < 0.2 because E0 = 10 keV

is the lowest energy considered in our calculations.

Comparison of the two figures shows that the distributions at the top of the loop are

markedly different than distributions midway down the loop. This would indicate that the

emission properties such as polarization, frequency, angle, and brightness temperature will

vary along the loop. Comparison of the contours for different column depths shows that

the effect of the collisions is to smooth out the sharp features of the distribution which are

the source of instabilities so that even for modest column depths (Ntr _> 7.37 x 1019cm-2),

the unstable features of the distribution are only seen on the lowest contours and at early

times.

Note that these more realistic distributions are far from the idealized assumed dis-

tributions mentioned earlier. However, parts of these distributions resemble parts of the

idealized distributions. For example, the distributions in Figure 1 at t2 have loss cone

features which are qualitatively similar to the sin-N distribution, and the distribution at

t3 for Ntr = 0 in Figure 2 shows isolated contours centered at (/_ll _" 0.1,/3± ,-_ 0.3) which

resemble the so called hollow beam distribution.

IV. Growth Rates and Analysis

As mentioned above, when determining the dynamical evolution of the distribu-

tion we need to specify the rate of convergence (or divergence) of the magnetic field,

dlnB/ds, but not its magnitude. However, as stated in §II, the most important pa-

rameter in determining the growth rates is the ratio of the plasma to gyrofrequency

U = (n/lOl°cm-3)l/2(320G/B). Therefore, to completely specify a model, in addition

to the mirror ratio and the column depth, we must specify the value of U at the top of
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the loop. We should also consider the effects of finite temperature even though these are

unimportant for determining the particle distribution as long as kT << E0. The primary

effect here is thermal damping of the waves by the ambient plasma. However, for magne-

toionic waves, damping is unimportant provided that the above inequality is valid so that

particle velocities far exceed the thermal velocity v,.

a) Cyclotron Maser

We need to compute the growth rates of x-mode, o-mode, and z-mode waves for a

particular distribution f. In order to sample the frequency space (w, 0) efficiently, we

use the method outlined in Aschwanden (1989). For a given mode a and (a;, 0) pair, the

resonance condition represented by the 6-function in equation (7)

,:,.,- .sfl,, /.'), - kllnll c = 0 (21)

defines an ellipse in velocity space (nil,n±),

(n, - n0)5 nl
V2(l_e2 ) +_ =1 , (22)

with the center (n0, 0), semi-major axis V, and eccentricity e given by

e 2

n0-
72 a COS 0 '

v = [1- (e/n_ cosO)2]'/_ , (23)

, = [1+ (sy/n_ coso)_]-'/2 .

Conversely, each point in velocity space (nill,/3±) can be identified with the top of a reso-

nance ellipse with n0 =/311, v =/3±, and frequency w = sf_,7(1 -/3].). The last relation

can be obtained from equation (21) using the expression kll = k cos0 = n_w cos O/c and

the fact that at the top of the resonance ellipse e2 = nllna cos 0 and 1 -e 2 = 3,-5/(1- __).

The frequency space grid is set-up by first finding the frequency range defined by the ve-

locity space grid and then subdividing this range. The range of angles for each frequency

is determined by the requirement that the resonant condition be satisfied (eq. [21]).
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Using the formulae of §II, results of §III, and this method of calculation, we evaluate

the growth rates of the x-mode (s = 1,2), o-mode (s = 1,2), and z-mode (s=l) for three

valuesUtop = 0.1, 0.5, and 1.0. The results of our calculations are shown in Tables 1 (top

3 ,Tmazof the loop) and 2 (at s -- Lc/2) at times t2 - T_ az and t 4 = _'B for three values

of the mirror ratio rrn. Note that the growth rates are functions of frequency and angle

and that we list the maximum values of the growth rates of each mode here. The mode

having the largest growth rate for a particular time and model is bold faced. We draw the

following conclusions from the results listed in these tables.

1. As the column depth of the plasma in the loop increases the growth rates decrease.

This is a general trend which is independent of the values of r,n or U. Even for a modest

column depth of 1.88 x 1019cm -2 the growth rates are reduced by 2 to 4 orders of magnitude.

2. The mode with the largest growth rate does not remain the same throughout the

entire loop because for converging magnetic field geometries the ratio U and the electron

distribution vary along the loop.

3. Although the distributions are complicated and vary along the loop, there are some

general trends in the results. These trends are in general different than those obtained from

assumed distributions or idealized situations. The fastest growing modes are z-mode for

U _<0.5, and second harmonic x-mode or fundamental o-mode for 0.5 _< U _< 1. Fundamental

x-mode growth is not important, even for U < 0.3. The fastest growing mode also depends

on the value af the mirror ratio rm. For example, for Utop = 0.5, the mode having the

largest growth rate at the top of the loop is the second harmonic x-mode when rm - 2 but

changes to the fundamental o-mode for rm _> 5.

4. An important consequence of the complexity of the distribution is the presence of

more than one inverted feature which occurs even at larger column depths but with reduced

gradients. This leads to the possibility that each of these inverted features might drive

a different instability. Since relaxation of one part of the distribution does not directly

affect the other inverted features, the distribution can support growth in more than one
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mode simultaneously. To illustrate this, we show in Figure 3 a contour plot of the electron

distribution for the model with Ntr = 1.88 x 1019cm -2 and rm = 5 at s = Lc/2 for time

3,r, maz Overlying the contours are the resonance ellipses for the o-mode (s=l),t4 : _B "

x-mode (s=2), and z-mode (s=l) corresponding to the frequencies and angles for these

modes that produced the largest growth rates given in Table 2. From the table we see that

F_ > r_ > F_, but as evident from Figure 3, these modes are driven by different features

of the inverted electron distribution. Therefore, even though F_ ,-, 5F_, saturation of the

o-mode (if it occurs) will not inhibit amplification of the x-mode. This is an important

result since this provides a mechanism to explain saturated maser emission which is not

very highly (,,,100%) circularly polarized. If the burst is resolved, a direct observational

consequence is that the right and left circular polarizations will show different rise times

due to the differences in the growth rates. It is clear that a more detailed analysis including

the dynamics of the wave growth is required in order to quantitatively determine the time

profile of the resulting spike bursts, but the qualitative behavior should agree with this

description.

b) Pla._ma Wave_

Because damping by thermal electrons is important, _he growth rate does not simply

scale with the ratio of the density of nonthermal to thermal electrons. The dispersion

relation as well as the thermal damping rate are sensitive to the temperature of the ambient

plasma. We compute the growth rate of plasma waves for na/no = 10 -2 and 10 -4 for

T = l0 s and 107K. In Table 3, we give the maximum growth rates of waves with wave

1 _maz and t2 1 Tmazvectors along the loop for times tl = _-B = _-'B . As expected, increasing the

column depth, increasing the temperature of the thermal plasma, or decreasing the ratio

ha�no reduces the growth rate. Notice that increasing the column depth does not reduce

the production of plasma waves by as large a factor as was seen for the magnetoionic

modes. Also note that the growth rates are largest at early times when the electrons are

down going and the distribution has beam-like nonthermal features.
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Relaxation of the distribution due to the generation of plasma waves results in the

reduction of the column depth traversed by the forward moving electrons (see e.g. Hamilton

and Petrosian 1987), but is not expected to influence the maser action since these processes

involve different electrons (cf. WMD86). However, we compute these growth rates to

emphasize the fact that whenever maser action occurs in this type of a physical system it

is accompanied by the production of plasma waves. Furthermore, the plasma waves are

generated at earlier times because they are driven by beam features which appear in the

distribution before reflection of electrons occurs. However, plasma waves could produce

density fluctuations which would modulate the maser emission.

V. Discussion

We have examined the cyclotron and plasma wave growth induced by electrons accel-

erated in magnetic loops. We considered an initial accelerated electron distribution which

is consistent with nontherrnal electron distributions that produce the impulsive hard X-ray

spectrum found in solar flares and is expected to be present in stellar flares as well. The

evolution of the electron distribution was determined by solving the kinetic equation in-

cluding magnetic convergence and Coulomb collisions with the ambient plasma. In general,

the fastest growing mode is determined by the value of U, .as for the idealized distributions,

with z-mode dominant for U <0.5, and second harmonic x-mode or fundamental o-mode

for 0.5 < U < 1. Growth of the fundamental x-mode is not significant which is in contrast to

the idealized situation. The resulting distributions have a complex structure and typically

have more than one inverted nonthermal feature. We showed that these features can drive

different modes simultaneously and that this provides a mechanism to explain partially

polarized emission. We note that it might also be possible for multiple features to give rise

to simultaneous amplification of different harmonics of the same polarization (e.g. x-mode

at s=l and s=2). Plasma wave growth is also shown to occur so that if cyclotron maser

emission produces the spike bursts the density fluctuations which result from the plasma

waves causes variations in U which could then modulate the emission.
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When collisions are included maser action still occurs, but the growth rates are reduced

significantly. The growth of plasma waves is also reduced, but by a much smaller amount.

Under modest conditions of column depth Nt,- = 1.88 x 1019cm -2 the growth rates are

typically reduced by 2 to 4 orders of magnitude for the magnetoionic modes and less than a

factor of ten for the plasma waves. For nominal physical conditions (Lc '-, 109-101°cm and

no --' 109-1011cm -3) in flaring solar coronal loops the column depth is this large or larger.

Therefore, maser emission in such loops is expected to be severly limited. This is also

true in larger (Lc > 101°era) low density (no < 10%m -3) loops which extend into the upper

corona because our results depend primarily on the column depth and to a lesser extent

on the the ratio of magnetic field scale height to loop length. Under these conditions,

this indicates that the spikey, rapidly varying bursts might be due to plasma emission as

suggested by Kuijpers, van der Post, and Slottje (1981) and not cyclotron maser emission.

However, the spike bursts should then be similar to type III bursts, but the characteristic

signatures of the spike and type III bursts are very different (see Benz 1986 Fig. 2). In

addition, density depletions are observed to occur simultaneously with the AKR (Benson,

Calvert, and Klumpar 1980). This may indicate that similar processes are occurring in

planetary, solar, and stellar magnetospheres. Our results suggest that in a solar flare

region, where there exists a large range of magnetic field strengths, temperatures, and

densities, maser action is possible only in the regions of lower density (and presumably

higher magnetic field or temperature for pressure balance) and should occur primarily

at the time onset before chromospheric evaporation increases the density suppressing the

maser action. This behavior explains why the spike bursts are usually seen only during

the rise and maximum phases of the microwave emission during solar flares.
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Table 1

log at the top of the loop

t: t2

r_: 2 5

N_: 0 10 20 0 10 20

10 2

0 10 20 0 10 20

t4

5 10

0 10 20 0 10 20

Utov = 0.1

XI: -6.83 -5.69 -7.87 -4.34 -5.10 -6.02 -3.05 -4.07 -5.53

X2:-4.19 -5.93 -7.19 -3.59 -5.31 -6.75 -2.41 -4.95 -5.88

O1:-5.07 -5.98 -6.81 -3.85 -4.90 -5.89 -2.36 -4.23 -5.40

O2:-6.14 -7.10 -7.94 -5.22 -6.30 -7.59 -4.12 -6.15 -6.?7

-2.68 -6.73 -7.83 -2.35 -5.22 -7.22 -2.65 -5.07 -6.84

-2.57 -6.34 -7.88 -1.93 -6.01 -8.15 -2.46 -6.54 -8.07

-2.20 -5.98 -7.40 -2.26 -5.44 -7.09 -1.95 -5.28 -6.74

-4.08 -7.39 -8.62 -3.96 -7.13 -8.84 -3.97 -7.51 -8.51

ZI: -3.51 -5.02 -6.12 -2.50 -4.12 -5.13 -1.17 -3.46 -4.83 -0.92 -5.20 -6.79 -0.92 -4.56 -6.32 -2.00 -4.63 -6.01

Utop = 0.5

XI: * * -9.70 -6.71 -6.68 -6.64 -6.30 -6.35 -6.53 * * * -7.23 -7.23 -7.32 -6.61 -6.70 -6.95

X2:-2,81 -4,11 -5,45 -1,88 -3.74 -5.02 -1.09 -3.60 -4.66 -0,48 -4.86 -5.96 -0.64 -4.57 -6.19 -0.56 -5.23 -6.01

01:-3.79 -4.61 -5.53 -1.99 -3.69 -4.66 -I.03 -3.05 -4.14

02:-4.80 -5.68 -6.69 -3.79 -5.10 -6.16 -2.88 -4.78 -5.56

ZI: -3.74 -4.67 -5.94 -2.01 -3.83 -4.78 -1.42 -3.42 -4.56

-0.55 -4,74 -6.08 -0.96 -4.07 -5.51 -0.68 -4.02 -5.43

-3.17 -5.98 -7.31 -2.57 -5.84 -7.45 -2.32 -6.49 -7.23

-1.76 -4.89 :6.54 -1.11 -4,00 -5.98 -0.98 -4.14 -5.60

U_op = 1.0

XI: * * * * * * * * *

X2:-1.65 -4.60 -5.84 -1".40 -2.93 -4.68 -0.62 -2.87 -4.46

01:-7.46 -5.68 -7.36 -4.27 -4.73 -5.46 -3.14 -3.82 -5.03

02:-4.39 -5.19 -6.40 -2.93 -4.70 -5.80 -2.32 -4.41 -5.28

* * * * * * * * *

-0.44 -4,01 -6.40 -0.24 -4.22 -6.05 -0.31 -4.29 -5.94

-3.04 -6.36 -7.29 -2.46 -4.88 -6.60 -2.58 -4.79 -6.19

-1.95 -5.66 -6.67 -2.19 -5.38 -6.61 -2.24 -5.80 -7.10

ZI: -4.91 -6.10 -6.46 -2.00 -3.72 -5.18 -1.71 -2.64 -4.42 -0.69 -4.79 .6,37 -0.45 -4.98 -5.56 -0.84 -4.34 -5.22

Values of the growth rate smaller than 10 -I° are represented by an asterick.
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Table 2

t: t2

r._ : 2 5 I0

No: 0 10 20 0 10 20 0 10 2O 0

t4

2 5 I0

i0 20 0 i0 20 0 I0 2O

U_op = 0.1

U: 0.08 0.05 0.03

XI: -6.35 -6.46 -7.61 -5.44 -5.74 -6.74 -5.52 -5.46 -6.80

X2:-3,62 -5,17 -7.08 -3,18 -5,10 -7,16 -3,72 -5.54 -7,61

O1:-4.82 -5.23 -6,83 -4.03 -5.05 -6.69 -4.53 -5.50 -7.02

O2:-6.22 -6.36 -7.98 -5.41 -6.53 -8.10 -6.25 -6.98 -8.70

0.08 0.05 0.03

-3.89 -7.24 -7.94 -3.29 -6.14 -7.71 -3.52 -6.44 -8.01

-2.89 -6.31 -7.99 -3.21 -6,84 -8,63 -3,86 -7,42 -9,17

-2.81 -6.30 -7.77 -3.32 -6.25 -7.85 -4.05 -6.67 -8.15

-4.61 -7.50 -8.89 -5.23 -7.93 -9.39 -5.88 -8.59 -9.92

ZI: -2.53 -4.10 -6.12 -1.88 -3.71 -5.75 -2.25 -4.14 -5.98 -1.53 -5.25 -6.93 -1.91 -5.17 -6.92 -2.33 -5.55 -7.21

U_op = 0.5

U: 0.40 0.25 0.15 0.40 0.25 0.15

XI: * * -7.54 -4.67 -4.70 -5.54 -4.42 -4.44 -5.57 -9.49 -7.31 -8.54 -2.96 -5.06 -6.75 -3.00 -5.26 -6.86

X2:-2.46 -4.34 -5.54 -1.94 -4.36 -5.53 -2.03 -4.60 -6.12 -1.37 -4.99 -6.68 -1.91 -5.47 -7.11 -2.25 -6.08 -7.89

01:-3.51 -4.10-5.30 -2.58 -3.69 -5.32 -3.14 -4.02 -5.62 -1.50 -4.97-6.35 -2.00 -4.85 -6.76 -2.66 -527 -6.84

02:-4.85 -5.01 -6.42 -4.00 -5.15 -6.72 -4.86 -5.56 -7.31 -3.25 -6.02 -7.51 -3.85 -6.56 -7.93 -4.49 -7.20 -8.52

ZI: -2.36 -4.07 -5.56 -1.63 -3.62 -5.08 -1.73 -3.79 -5.18 -1.48 -4.84 -6.35 -1.67 -4.61 -6.23 -1.82 -4.84 -6.39

Utop = 1.0

U: 0,8 0.5 0.3

XI: * * * -9.16 -9.09 -8.63 -4.97 -4.86 -5,21

X2:-1.33 -3.55 -5.31 -1.62 -3.3T -5.17 -1.87 -3.85 -5.59

Oh -2.12 -4.21 -5.45 -2.44 -3.53 -4.53 -2.58 -3.30 -5.11

02:-4.37 -4.76 -6.00 -3.39 -4.61 -6.21 -4.27 -4.91 -6.73

0.8 0.5 0.3

* * * -8.92 -8.87 -8.70 -4.80 -5.19 -6.53

-0.56 -4.40 -5.81 -1.24 -5.06 -6.45 -2.00 -5.41 -7.14

-1.10 -4.43 -6.27 -1.29-4.32-5.61 -2.09-4.79-6.53

-2.78 -5.82 -6.88 -3.21 -5.96 -7.57 -3.92 -6.63 -7.93

ZI: -1.99 -3.39 -6.13 -1.86 -3.76 -5,00 -I.78 -3.82 -4.89 -1,85 -3.60 -6.34 -1.77 -4.84 -6.16 -1.80 -524 -5.89

Values of the growth rate smaller than 10 -1° are represented by an asterick.
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Table 3

1

0 I0 20

2

0 I0 20

5

0 I0 20

I0

0 10 20

10.2 106

10.2 10T

10.4 106

10.4 107

-3.22 -3.61 -4.41

-5.26 -5.26 -5.29

-5.35 -5.92 -6.41

-7.26 -7.26 -7.29

-2.03 -2.76 -3.78

-2.22 -3.08 -4.01

-4.03 -4.76 -5.78

-5.07 -5.55 -6.22

-2.81 -3.32 -3.88

-3.54 -3.70 -4.06

-4.81 -5.32 -5.88

-6.15 -6.27 -6.46

-3.57 -3.94 -4.39

-5.24 -5.28 -5.34

-5.69 -5.94 -6.40

-7.27 -7.32 -7.38

10.2 106

10.2 107

10.4 106

10-4 10T

-2.32 -2.88 -3.42 -2.17 -4.48 * -2.54 -3.82 -5.75

-2.84 -3.22 -3.66 * * * * * *

-4.32 -4.88 -5.42 -4.17 -7.57 * -4.54 -5.82 -7.96

-5.18 -5.45 -5.98 * * * * * *

-2.85 -3.92 -5.66

-4.85 -5.92 -7.66

Values of the growth rate smaller than 10 -1° are represented by an asterick.
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Figure Captions

Fig. 1. Contour plots of the electron distribution function in the fill-ill plane at the top of

the loop for a mirror ratio of rm = 5. The column depths from left to right are Ntr =

0, 1.88 x 1019, and 7.37 x 1019cm -2 corresponding to stopping depths for electrons

of energies E = 0, 10, and 20 keV, respectively. The times from top to bottom are

I m,na= 1 .r,n,= T_-Z and 3 m,nax The contour levels are spaced by a factor of 10_'""B , _"B ' , _'" B "

and are the same for each plot.

Fig. 2. Same as Figure 1, but at s = Lc/2.

Fig. 3. Contour plot of the electron distribution shown in the middle of Figure 2 with

Ntr 1.88 × 1019cm -2 at time 3,vma= Contour levels are now spaced by a factor

of 5. The darker lines represent the resonant ellipses of the o-mode (s=l), x-mode

(s=2), and z-mode waves at frequencies and angles which maximize their growth

rates.
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